If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+64x+1=0
a = 2; b = 64; c = +1;
Δ = b2-4ac
Δ = 642-4·2·1
Δ = 4088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4088}=\sqrt{4*1022}=\sqrt{4}*\sqrt{1022}=2\sqrt{1022}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-2\sqrt{1022}}{2*2}=\frac{-64-2\sqrt{1022}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+2\sqrt{1022}}{2*2}=\frac{-64+2\sqrt{1022}}{4} $
| 150+60x=1460 | | 2(x-1)+5=x-18 | | i/8=2 | | 6x+11=34 | | 2x+30=15-7x | | 1/2(24+10d)=d | | -8p=4p^2–1 | | 7(x+3)-7=63 | | 5x–(x+4)=10–2(x–5) | | 6x+27=-34+31 | | 2x-4+4x-1=8x-3 | | 6−3x=−9+2x | | 5(x+3)=3.5 | | x/5+14=71 | | 3=-5x+9x+6 | | 4x-9x+3=-33 | | 7+3x-12x=3x=3x+1 | | 6x-6=-7+7x | | 6x/32=20 | | 8x-34=2 | | 8x+1x-18=11x+12 | | 3x=15=8x | | 3x+17=9x-6 | | 4+2/3x=4+6/7x | | -6=i/18 | | (x+29)=(3x+5) | | 2a+3=-1/2(6+4a) | | f-8=-42 | | 6x+3=10x-13 | | -18=7+9-10x | | 4k=21 | | 15=4s-3 |